Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models

Accurate forecasting of solar energy is essential for photovoltaic (PV) plants, to facilitate their participation in the energy market and for efficient resource planning. This article is dedicated to two forecasting models: (1) ARIMA (Autoregressive Integrated Moving Average) statistical approach t...

Full description

Saved in:
Bibliographic Details
Main Authors: Laurentiu Fara, Alexandru Diaconu, Dan Craciunescu, Silvian Fara
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2021/6777488
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate forecasting of solar energy is essential for photovoltaic (PV) plants, to facilitate their participation in the energy market and for efficient resource planning. This article is dedicated to two forecasting models: (1) ARIMA (Autoregressive Integrated Moving Average) statistical approach to time series forecasting, using measured historical data, and (2) ANN (Artificial Neural Network) using machine learning techniques. The main contributions of the authors could be synthetized as follows: (1) analysis and discussion of the experimental and simulated results regarding solar radiation forecast, as well as energy production prediction and forecasting based on ARIMA and ANN models for two case studies: (a) laboratory BIPV system developed at the Polytechnic University of Bucharest and (b) large PV park placed in a specific site of the south of Romania. A variability index of solar radiation was introduced for the model improvement; (2) comparison between the ARIMA and ANN results to highlight the ARIMA model which is more efficient than the ANN one; (3) optimized method defined by the GMDH model (Group Method of Data Handling) proposed to provide a software program for calculation of the PV energy production.
ISSN:1110-662X
1687-529X