Coordinating Manipulation in Real-time Interactive Mechanism of College Admission: Agent-Based Simulations
The matching in college admission is a typical example of applying algorithms in cyberspace to improve the efficiency of the corresponding process in physical space. This paper studies the real-time interactive mechanism (RIM) recently adopted in Inner Mongolia of China, where students can immediate...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/8015979 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The matching in college admission is a typical example of applying algorithms in cyberspace to improve the efficiency of the corresponding process in physical space. This paper studies the real-time interactive mechanism (RIM) recently adopted in Inner Mongolia of China, where students can immediately observe the provisional admission results for their applications and are allowed to modify the application before the deadline. Since the universities accept the applications according to the ranking of the scores, RIM is believed to make the competition more transparent. However, students may coordinate to manipulate this mechanism. A high-score student can perform a last-minute change on the university applied, opening a slot for a student with a much lower score. With agent-based simulations, we find that a large portion of students will choose to perform coordinating manipulation, which erodes the welfare and fairness of society. To cope with this issue, we investigate the Multistage RIM (MS-RIM), where students with different ranges of scores are given different deadlines for application modification. We find that the multistage policy reduces the chance of manipulation. However, the incentive to conduct manipulation is increased by a higher success rate of manipulation. Hence, the overall social welfare and fairness are further diminished under MS-RIM with a small number of stages, but are improved if the stage number is large. |
---|---|
ISSN: | 1076-2787 1099-0526 |