Optimal Packet Length for Free-Space Optical Communications with Average SNR Feedback Channel

In this article, a method to enhance data rates of free-space optical (FSO) systems using packet length optimization is proposed. The average signal-to-noise ratio (ASNR) is measured at the receiver and sent back to the transmitter to optimize packet length. In addition, the length of packet is opti...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghassan Alnwaimi, Hatem Boujemaa, Kamran Arshad
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Computer Networks and Communications
Online Access:http://dx.doi.org/10.1155/2019/4703284
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, a method to enhance data rates of free-space optical (FSO) systems using packet length optimization is proposed. The average signal-to-noise ratio (ASNR) is measured at the receiver and sent back to the transmitter to optimize packet length. In addition, the length of packet is optimized to enhance the average throughput. We concluded that packet length can be reduced at low ASNR. However, packet length should be increased at higher values of received ASNR. For each ASNR, we also choose the optimal modulation and coding scheme (MCS) and optimal packet length to maximize the throughput. Different MCSs are investigated such as 4-pulse amplitude modulation (PAM) with and without channel coding, 8-PAM, 16-PAM, and 32-PAM. The proposed method gives 0.8–1.9 dB gain with respect to conventional FSO with adaptive modulation and coding (AMC) and fixed packet length. This is the first paper to deal with packet length optimization for FSO systems.
ISSN:2090-7141
2090-715X