Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage
Abstract The high-entropy strategy has emerged as a prevalent approach to boost capacitive energy-storage performance of relaxors for advanced electrical and electronic systems. However, exploring high-performance high-entropy systems poses challenges due to the extensive compositional space. Herein...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56443-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The high-entropy strategy has emerged as a prevalent approach to boost capacitive energy-storage performance of relaxors for advanced electrical and electronic systems. However, exploring high-performance high-entropy systems poses challenges due to the extensive compositional space. Herein, with the assistance of machine learning screening, we demonstrated a high energy-storage density of 20.7 J cm-3 with a high efficiency of 86% in a high-entropy Pb-free relaxor ceramic. A random forest regression model with key descriptors based on limited reported experimental data were developed to predict and screen the elements and chemical compositions of high-entropy systems. Following basic experiments, a (Bi0.5Na0.5)TiO3-based high-entropy relaxor characterized by fine grains, weakly-coupled and small-sized polar clusters was identified. This resulted in a near-linear polarization behavior and an ultrahigh breakdown strength of 95 kV mm-1. Further, this high-entropy realxor presented a high discharge energy density of 7.7 J cm-3 under discharge rate of about 27 ns, along with superior temperature and fatigue stability. Our results present the data-driven model for efficiently exploring high-performance high-entropy relaxors, demonstrating the potential of machine learning in developing relaxors. |
---|---|
ISSN: | 2041-1723 |