Simulation Study of Building Integrated Solar Liquid PV-T Collectors

Influence of building integration of polycrystalline PV modules on their performance and potential for use of active liquid cooling by use of BIPV-T collectors has been investigated by simulation analysis with a detailed model. Integration of PV modules into building envelope could reduce the annual...

Full description

Saved in:
Bibliographic Details
Main Author: Tomas Matuska
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2012/686393
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Influence of building integration of polycrystalline PV modules on their performance and potential for use of active liquid cooling by use of BIPV-T collectors has been investigated by simulation analysis with a detailed model. Integration of PV modules into building envelope could reduce the annual production of electricity by a rate above 5% and negatively influence lifetime due to thermal stresses induced by high operation temperatures above 100°C in the case of warm climate and above 90°C in moderate climate. Two configurations of unglazed PV-T collectors (low-tech, high-tech) and their ability to eliminate overheating of BIPV module have been discussed. Simulation study on combined heat and electricity production from given BIPV-T collectors has been presented for three typical applications (5°C: primary circuits of heat pumps; 15°C: cold water preheating; 25°C: pool water preheating). Thermal output of unglazed BIPV-T collectors is up to 10 times higher than electricity. Electricity production could be up to 25% higher than BIPV (without cooling) for warm climate and up to 15% in moderate climate.
ISSN:1110-662X
1687-529X