Performance Degradation of Ground Source Heat Pump Systems Under Ground Temperature Disturbance: A TRNSYS-Based Simulation Study

Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated con...

Full description

Saved in:
Bibliographic Details
Main Authors: Yeqi Huang, Zhongchao Zhao, Mengke Sun
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/15/3909
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated conditions. This study develops a mechanism-based TRNSYS simulation that integrates building loads, subsurface heat transfer, and dynamic heat pump operation. A 20-year case study in Shanghai reveals long-term performance degradation driven by thermal boundary shifts. Results show that GT increases by over 12 °C during the simulation period, accompanied by a progressive increase in ΔT by approximately 0.20 K and a consistent decline in COP. A near-linear inverse relationship is observed, with COP decreasing by approximately 0.038 for every 1 °C increase in GT. In addition, ΔT is identified as a key intermediary linking subsurface thermal disturbance to efficiency loss. A multi-scale response framework is established to capture both annual degradation and daily operational shifts along the Load–GT–ΔT–COP pathway. This study provides a quantitative explanation of the thermal degradation process and offers theoretical guidance for performance forecasting, operational threshold design, and thermal regulation in GSHP systems.
ISSN:1996-1073