Gaitmap—An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking

<italic>Goal:</italic> Gait analysis using inertial measurement units (IMUs) has emerged as a promising method for monitoring movement disorders. However, the lack of public data and easy-to-use open-source algorithms hinders method comparison and clinical application development. To add...

Full description

Saved in:
Bibliographic Details
Main Authors: Arne Kuderle, Martin Ullrich, Nils Roth, Malte Ollenschlager, Alzhraa A. Ibrahim, Hamid Moradi, Robert Richer, Ann-Kristin Seifer, Matthias Zurl, Raul C. Simpetru, Liv Herzer, Dominik Prossel, Felix Kluge, Bjoern M. Eskofier
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10411039/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583234480766976
author Arne Kuderle
Martin Ullrich
Nils Roth
Malte Ollenschlager
Alzhraa A. Ibrahim
Hamid Moradi
Robert Richer
Ann-Kristin Seifer
Matthias Zurl
Raul C. Simpetru
Liv Herzer
Dominik Prossel
Felix Kluge
Bjoern M. Eskofier
author_facet Arne Kuderle
Martin Ullrich
Nils Roth
Malte Ollenschlager
Alzhraa A. Ibrahim
Hamid Moradi
Robert Richer
Ann-Kristin Seifer
Matthias Zurl
Raul C. Simpetru
Liv Herzer
Dominik Prossel
Felix Kluge
Bjoern M. Eskofier
author_sort Arne Kuderle
collection DOAJ
description <italic>Goal:</italic> Gait analysis using inertial measurement units (IMUs) has emerged as a promising method for monitoring movement disorders. However, the lack of public data and easy-to-use open-source algorithms hinders method comparison and clinical application development. To address these challenges, this publication introduces the gaitmap ecosystem, a comprehensive set of open source Python packages for gait analysis using foot-worn IMUs. <italic>Methods:</italic> This initial release includes over 20 state-of-the-art algorithms, enables easy access to seven datasets, and provides eight benchmark challenges with reference implementations. Together with its extensive documentation and tooling, it enables rapid development and validation of new algorithm and provides a foundation for novel clinical applications. <italic>Conclusion:</italic> The published software projects represent a pioneering effort to establish an open-source ecosystem for IMU-based gait analysis. We believe that this work can democratize the access to high-quality algorithm and serve as a driver for open and reproducible research in the field of human gait analysis and beyond.
format Article
id doaj-art-7c1d2ffe1462458aa9a4e12090a5e3e2
institution Kabale University
issn 2644-1276
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Engineering in Medicine and Biology
spelling doaj-art-7c1d2ffe1462458aa9a4e12090a5e3e22025-01-29T00:01:26ZengIEEEIEEE Open Journal of Engineering in Medicine and Biology2644-12762024-01-01516317210.1109/OJEMB.2024.335679110411039Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm BenchmarkingArne Kuderle0https://orcid.org/0000-0002-5686-281XMartin Ullrich1https://orcid.org/0000-0001-7348-6097Nils Roth2https://orcid.org/0000-0002-9166-3920Malte Ollenschlager3https://orcid.org/0000-0002-8135-6740Alzhraa A. Ibrahim4https://orcid.org/0000-0003-3308-061XHamid Moradi5https://orcid.org/0009-0001-2715-8591Robert Richer6https://orcid.org/0000-0003-0272-5403Ann-Kristin Seifer7https://orcid.org/0000-0002-5891-218XMatthias Zurl8https://orcid.org/0000-0002-9678-166XRaul C. Simpetru9https://orcid.org/0000-0003-0455-0168Liv Herzer10https://orcid.org/0009-0007-3427-5132Dominik Prossel11Felix Kluge12https://orcid.org/0000-0003-4921-6104Bjoern M. Eskofier13https://orcid.org/0000-0002-0417-0336Machine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, GermanyMachine Learning and Data Analytics Lab, Friedrich-Alexander Universit&#x00E4;t Erlangen-N&#x00FC;rnberg (FAU), Erlangen, Germany<italic>Goal:</italic> Gait analysis using inertial measurement units (IMUs) has emerged as a promising method for monitoring movement disorders. However, the lack of public data and easy-to-use open-source algorithms hinders method comparison and clinical application development. To address these challenges, this publication introduces the gaitmap ecosystem, a comprehensive set of open source Python packages for gait analysis using foot-worn IMUs. <italic>Methods:</italic> This initial release includes over 20 state-of-the-art algorithms, enables easy access to seven datasets, and provides eight benchmark challenges with reference implementations. Together with its extensive documentation and tooling, it enables rapid development and validation of new algorithm and provides a foundation for novel clinical applications. <italic>Conclusion:</italic> The published software projects represent a pioneering effort to establish an open-source ecosystem for IMU-based gait analysis. We believe that this work can democratize the access to high-quality algorithm and serve as a driver for open and reproducible research in the field of human gait analysis and beyond.https://ieeexplore.ieee.org/document/10411039/Accelerometerwalkingbiomarkerbiomechanicsmovement analysis
spellingShingle Arne Kuderle
Martin Ullrich
Nils Roth
Malte Ollenschlager
Alzhraa A. Ibrahim
Hamid Moradi
Robert Richer
Ann-Kristin Seifer
Matthias Zurl
Raul C. Simpetru
Liv Herzer
Dominik Prossel
Felix Kluge
Bjoern M. Eskofier
Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
IEEE Open Journal of Engineering in Medicine and Biology
Accelerometer
walking
biomarker
biomechanics
movement analysis
title Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
title_full Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
title_fullStr Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
title_full_unstemmed Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
title_short Gaitmap&#x2014;An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking
title_sort gaitmap x2014 an open ecosystem for imu based human gait analysis and algorithm benchmarking
topic Accelerometer
walking
biomarker
biomechanics
movement analysis
url https://ieeexplore.ieee.org/document/10411039/
work_keys_str_mv AT arnekuderle gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT martinullrich gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT nilsroth gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT malteollenschlager gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT alzhraaaibrahim gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT hamidmoradi gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT robertricher gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT annkristinseifer gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT matthiaszurl gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT raulcsimpetru gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT livherzer gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT dominikprossel gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT felixkluge gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking
AT bjoernmeskofier gaitmapx2014anopenecosystemforimubasedhumangaitanalysisandalgorithmbenchmarking