Condition Recognition of High-Speed Train Bogie Based on Multi-View Kernel FCM

Monitoring the operating status of a High-Speed Train (HST) at any moment is necessary to ensure its security. Multi-channel vibration signals are collected by sensors installed on bogies and beneficial information are extracted to determine the running condition. Based on multi-view clustering and...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Rao, Yan Yang, Yongquan Jiang
Format: Article
Language:English
Published: Tsinghua University Press 2019-03-01
Series:Big Data Mining and Analytics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/BDMA.2018.9020027
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monitoring the operating status of a High-Speed Train (HST) at any moment is necessary to ensure its security. Multi-channel vibration signals are collected by sensors installed on bogies and beneficial information are extracted to determine the running condition. Based on multi-view clustering and considering different views of complementary information, this study proposes a Multi-view Kernel Fuzzy C-Means (MvKFCM) model for condition recognition of the HST bogie. First, fast Fourier transform coefficients of HST vibration signals of all channels are extracted. Then, the fuzzy classification coefficient of every channel is calculated after clustering to select the appropriate channels. Finally, the selected channels are used to cluster by MvKFCM and the conditions of HST are determined. Experimental results show that the selection is effective to maintain rich feature information and remove redundancy. Furthermore, the condition recognition rate of MvKFCM is higher than that of single-view and four other multiple-view clustering algorithms.
ISSN:2096-0654