Neutrophil adhesion to vessel walls impairs pulmonary circulation in COVID-19 pathology

Abstract Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected...

Full description

Saved in:
Bibliographic Details
Main Authors: Hiroshi Ueki, I-Hsuan Wang, Maki Kiso, Kenta Horie, Shun Iida, Sohtaro Mine, Michiko Ujie, Hung-Wei Hsu, Chen-Hui Henry Wu, Masaki Imai, Tadaki Suzuki, Wataru Kamitani, Eiryo Kawakami, Yoshihiro Kawaoka
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55272-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion. Re-analysis of scRNA-seq data from peripheral blood mononuclear cells from COVID-19 cases revealed increased expression levels of CD44 and SELL in neutrophils in severe COVID-19 cases compared to a healthy group, consistent with our observations in the mouse model. These findings suggest that pulmonary perfusion defects caused by neutrophil adhesion to pulmonary vessels contribute to COVID-19 severity.
ISSN:2041-1723