Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection

Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in...

Full description

Saved in:
Bibliographic Details
Main Authors: L. Meziou, A. Histace, F. Precioso, O. Romain, X. Dray, B. Granado, B. J. Matuszewski
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2014/428583
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568369404968960
author L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
author_facet L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
author_sort L. Meziou
collection DOAJ
description Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.
format Article
id doaj-art-79cbbe42a8a742e18bb01f7c3dce54dd
institution Kabale University
issn 1687-4188
1687-4196
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series International Journal of Biomedical Imaging
spelling doaj-art-79cbbe42a8a742e18bb01f7c3dce54dd2025-02-03T00:59:09ZengWileyInternational Journal of Biomedical Imaging1687-41881687-41962014-01-01201410.1155/2014/428583428583Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies DetectionL. Meziou0A. Histace1F. Precioso2O. Romain3X. Dray4B. Granado5B. J. Matuszewski6ETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceI3S, Université de Nice/Sophia-Antipolis, CNRS, 06900 Sophia-Antipolis, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceLIP6, Université Pierre et Marie Curie, CNRS, 75252 Paris, FranceRobotics and Computer Vision Research Laboratory, School of Computing Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE, UKVisualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.http://dx.doi.org/10.1155/2014/428583
spellingShingle L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
International Journal of Biomedical Imaging
title Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_fullStr Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full_unstemmed Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_short Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_sort computer assisted segmentation of videocapsule images using alpha divergence based active contour in the framework of intestinal pathologies detection
url http://dx.doi.org/10.1155/2014/428583
work_keys_str_mv AT lmeziou computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT ahistace computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT fprecioso computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT oromain computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT xdray computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT bgranado computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT bjmatuszewski computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection