Laser sintering of Cu particle-free inks for high-performance printed electronics

Abstract This study investigates laser sintering of Cu particle-free ink (Cu formate tetrahydrate—amino-2-propanol complex) as an alternative to conventional sintering in an oven (under inert/reducing atmosphere). Utilizing benefits of high-speed localized heating using laser, substrate damage can b...

Full description

Saved in:
Bibliographic Details
Main Authors: Nihesh Mohan, Juan Ignacio Ahuir-Torres, Hiren R. Kotadia, Gordon Elger
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:npj Flexible Electronics
Online Access:https://doi.org/10.1038/s41528-025-00389-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study investigates laser sintering of Cu particle-free ink (Cu formate tetrahydrate—amino-2-propanol complex) as an alternative to conventional sintering in an oven (under inert/reducing atmosphere). Utilizing benefits of high-speed localized heating using laser, substrate damage can be prevented for low-melting substrates such as Polyethylene Terephthalate (PET). Firstly, a suitable sintering process window is achieved based on energy density for two different flexible polymeric susbtrates: Polyimide and PET using different laser parameters (laser power, scan rate and spot diameter). Subsequently, characterization of laser sintered traces are also made using different laser optic profiles (Gaussian and top hat). Different methodologies for fabrication of metallized Cu layer were also demonstrated. A very low bulk resistivity of 3.24 µΩcm (1.87 times of bulk Cu) was achieved on trace thickness of 0.85 ± 0.15 µm exhibiting good adherence to polymeric substrates. A promising fabrication process of low-cost and reliable flexible printed electronic devices is demonstrated.
ISSN:2397-4621