Ester derivatives of Dictyostelium differentiation-inducing factors exhibit antibacterial activity, possibly via a prodrug-like function

Abstract Objective Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylo...

Full description

Saved in:
Bibliographic Details
Main Authors: Katsunori Takahashi, Haruhisa Kikuchi, Takehiro Nishimura, Hirotaka Ishigaki, Yusuke Miura, Ayuko Takahashi, Yuzuru Kubohara
Format: Article
Language:English
Published: BMC 2025-01-01
Series:BMC Research Notes
Subjects:
Online Access:https://doi.org/10.1186/s13104-025-07122-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-sensitive Enterococcus faecalis (VSE), and vancomycin-resistant Enterococcus faecium [VRE (VanA)]. This study investigates the therapeutic potential of DIF compounds against these Gram-positive bacteria. Results In vitro tests revealed that the antibacterial activity of 3 and 4 was lost in the presence of human serum albumin (HSA), suggesting that HSA might inhibit their effectiveness. Further evaluation of less hydrophobic derivatives, DIF-1-NH2 (5) and NH2-Bu-DIF-3 (6), showed no antibacterial activity, even in the absence of HSA. However, ester derivatives Ph-DIF-1(AHA) (7) and Bu-DIF-3(2Ac) (8) exhibited antibacterial activity against the target bacteria in vitro, although this activity was also lost in the presence of HSA. We hypothesize that these ester derivatives may function as prodrugs, with their antibacterial activity possibly restored by hydrolysis through bacterial esterases. The results suggest that suitable ester modifications could enhance the in vivo antibacterial potential of DIF compounds, particularly if they can bypass HSA binding and be activated by bacterial enzymes.
ISSN:1756-0500