Unveiling hidden geometric phase of neutron spin rotation in the Bitter–Dubbers experiment

We propose a novel framework to describe geometric phases in quantum systems under non-adiabatic conditions by introducing the concept of a hidden geometric phase. Conventional geometric phases, such as the Berry phase, rely on adiabatic evolution, limiting their applicability in rapidly changing sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian-Jian Cheng, Lin Zhang
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/adae29
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a novel framework to describe geometric phases in quantum systems under non-adiabatic conditions by introducing the concept of a hidden geometric phase. Conventional geometric phases, such as the Berry phase, rely on adiabatic evolution, limiting their applicability in rapidly changing systems. Here, we remove this constraint by reinterpreting the geometric phase as arising from a dynamically evolving reference basis, independent of the external topological features. The hidden phase is revealed through transitionless quantum control techniques, ensuring pure geometric phase accumulation even in non-adiabatic regimes. Our method offers an exact solution to the neutron spin rotation phase in the Bitter–Dubbers experiment, aligning more closely with experimental data without depending on adiabatic approximations. This unexpected result broadens our understanding of the geometric phase observed in neutron spin rotation beyond the adiabatic conditions that are conventionally required.
ISSN:1367-2630