A SVR Learning Based Sensor Placement Approach for Nonlinear Spatially Distributed Systems
Many industrial processes are inherently distributed in space and time and are called spatially distributed dynamical systems (SDDSs). Sensor placement affects capturing the spatial distribution and then becomes crucial issue to model or control an SDDS. In this study, a new data-driven based sensor...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Applied Computational Intelligence and Soft Computing |
| Online Access: | http://dx.doi.org/10.1155/2016/5241279 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|