Selective learning for sensing using shift-invariant spectrally stable undersampled networks
Abstract The amount of data collected for sensing tasks in scientific computing is based on the Shannon-Nyquist sampling theorem proposed in the 1940s. Sensor data generation will surpass 73 trillion GB by 2025 as we increase the high-fidelity digitization of the physical world. Skyrocketing data in...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-83706-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|