Genetic Variations Affect Chemotherapy Outcomes: A Role of the Spindle-assembly Checkpoint
Cancer patients suffer from complicated chemotoxicity. Pharmacogenomics can help stratify patients by predicting their response to treatment and susceptibility toward severe side effects. The spindle-assembly checkpoint (SAC) is an important pathway that is activated by platinum and taxane compounds...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2024-04-01
|
Series: | Indian Journal of Public Health |
Subjects: | |
Online Access: | https://journals.lww.com/10.4103/ijph.ijph_809_23 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cancer patients suffer from complicated chemotoxicity. Pharmacogenomics can help stratify patients by predicting their response to treatment and susceptibility toward severe side effects. The spindle-assembly checkpoint (SAC) is an important pathway that is activated by platinum and taxane compounds and plays a crucial role in their cytotoxic activity. This study investigated a SAC component, Budding Uninhibited by Benzimidazoles 3 (BUB3), its expression, and genetic variants in advanced ovarian cancer patients treated with paclitaxel–carboplatin chemotherapy. Among 80 patients, BUB3 expression correlated with chemosensitivity, suggesting its potential as a predictive marker for chemotherapy response. However, high BUB3 expression was associated with a higher risk of poor survival. In addition, genetic polymorphisms in BUB3 (rs11248416 and rs11248419) were significantly linked to chemotherapy-related toxicities, with rs11248416 showing a negative impact on the patient’s physical quality of life. |
---|---|
ISSN: | 0019-557X 2229-7693 |