Polynomial and Differential Networks for End-to-End Autonomous Driving
This study introduces a novel model for predicting control variables in end-to-end autonomous driving by leveraging polynomial and differential networks. Recent advancements in autonomous driving have predominantly focused on methods that incorporate additional supervisory data, such as attention me...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10971419/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|