Robust prediction of chlorophyll-A from nitrogen and phosphorus content in Philippine and global lakes using fine-tuned, explainable machine learning

Chlorophyll-a (Chl-a) content in waterbodies is a primary indicator of algal biomass and is used to detect impending harmful algal blooms. This paper presents a methodology using 8 popular machine learning (ML) models for estimating Chl-a concentration from nutrient content in lakes. Different from...

Full description

Saved in:
Bibliographic Details
Main Authors: Karl Ezra Pilario, Eric Jan Escober, Aurelio de los Reyes V, Maria Pythias Espino
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Environmental Challenges
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667010024002221
Tags: Add Tag
No Tags, Be the first to tag this record!