Applications of Cubic Schweizer–Sklar Power Heronian Mean to Multiple Attribute Decision-Making

The cubic set (CS) is a basic simplification of several fuzzy notions, including fuzzy set (FS), interval-valued FS (IVFS), and intuitionistic FS (IFS). By the degrees of IVFS and FS, CS exposes fuzzy judgement, and this is a much more potent mathematical approach for dealing with information that i...

Full description

Saved in:
Bibliographic Details
Main Authors: Qaisar Khan, Muhammad Shahzad, Saqib Sharif, Mohammed Elgarhy, Mahmoud El-Morshedy, Suleman Nasiru
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2022/5920189
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cubic set (CS) is a basic simplification of several fuzzy notions, including fuzzy set (FS), interval-valued FS (IVFS), and intuitionistic FS (IFS). By the degrees of IVFS and FS, CS exposes fuzzy judgement, and this is a much more potent mathematical approach for dealing with information that is unclear, ambiguous, or indistinguishable. The article provides many innovative operational laws for cubic numbers (CNs) drawn on the Schweizer–Sklar (SS) t-norm (SSTN), and the SS t-conorm (SSTCN), as well as several desired properties of these operational laws. We also plan to emphasise on the cubic Schweizer–Sklar power Heronian mean (CSSPHM) operator, as well as the cubic Schweizer–Sklar power geometric Heronian mean (CSSPGHM) operator, in order to maintain the supremacy of the power aggregation (PA) operators that seize the complications of the unsuitable information and Heronian mean (HM) operators that contemplate the interrelationship between the input data being aggregated. A novel multiple attribute decision-making (MADM) model is anticipated for these freshly launched aggregation operators (AOs). Finally, a numerical example of enterprise resource planning is used to validate the approach’s relevance and usefulness. There is also a comparison with existing decision-making models.
ISSN:1099-0526