Improved Results on Fuzzy H∞ Filter Design for T-S Fuzzy Systems

The fuzzy H∞ filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay deri...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiyao An, Guilin Wen, Wei Xu
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2010/392915
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fuzzy H∞ filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper bound of its derivative is obtained. The resulting criterion thus has advantages over the existing ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional without ignoring some useful terms. A fuzzy H∞ filter is designed to ensure that the filter error system is asymptotically stable and has a prescribed H∞ performance level. An improved delay-derivative-dependent condition for the existence of such a filter is derived in the form of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method.
ISSN:1026-0226
1607-887X