Some remarks about Mackey convergence

In this paper, we examine Mackey convergence with respect to K-convergence and bornological (Hausdorff locally convex) spaces. In particular, we prove that: Mackey convergence and local completeness imply property K; there are spaces having K- convergent sequences that are not Mackey convergent; the...

Full description

Saved in:
Bibliographic Details
Main Authors: Józef Burzyk, Thomas E. Gilsdorf
Format: Article
Language:English
Published: Wiley 1995-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171295000846
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we examine Mackey convergence with respect to K-convergence and bornological (Hausdorff locally convex) spaces. In particular, we prove that: Mackey convergence and local completeness imply property K; there are spaces having K- convergent sequences that are not Mackey convergent; there exists a space satisfying the Mackey convergence condition, is barrelled, but is not bornological; and if a space satisfies the biackey convergence condition and every sequentially continuous seminorm is continuous, then the space is bornological.
ISSN:0161-1712
1687-0425