Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
<p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-02-01
|
Series: | Journal of Sensors and Sensor Systems |
Online Access: | https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832087128761171968 |
---|---|
author | L. Mollard C. Dieppedale A. Hamelin R. Liechti G. Le Rhun |
author_facet | L. Mollard C. Dieppedale A. Hamelin R. Liechti G. Le Rhun |
author_sort | L. Mollard |
collection | DOAJ |
description | <p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span class="inline-formula">×</span> 0.5 to 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span>, and incorporate sputtered potassium sodium niobate ((K<span class="inline-formula"><sub>0.35</sub></span>Na<span class="inline-formula"><sub>0.65</sub></span>)NbO<span class="inline-formula"><sub>3</sub></span>) thin-film piezo-motors from Sumitomo Chemical, with thicknesses varying from 0.5 to 1.5 <span class="inline-formula">µ</span>m. A comparison of the mirror's performance and static deformation as a function of KNN thickness will be presented and discussed. The results obtained with these non-resonant mirrors, all fabricated using a collective 200 mm silicon manufacturing process, exhibit the following: (a) an arm deformation of 50 to 80 <span class="inline-formula">µ</span>m corresponding to an estimated tensile residual stress of approximately 120 MPa in the KNN layer, (b) the same level of performance for the 0.5 <span class="inline-formula">µ</span>m thick lead zirconate titanate (PZT) and KNN at 10 V, and (c) an optical angle up to 8.5° at 40 V for the 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span> mirror design with 1.5 <span class="inline-formula">µ</span>m thick KNN. These results indicate that the MEMS mirrors fabricated with the KNN lead-free piezoelectric material offer state-of-the-art performances and open potential applications in a wide range of fields from light detection and ranging (lidar) systems to biomedical applications, thanks to the full biocompatibility of the KNN material.</p> |
format | Article |
id | doaj-art-73a1ff3d7bd544dbab87d06638700f09 |
institution | Kabale University |
issn | 2194-8771 2194-878X |
language | English |
publishDate | 2025-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Journal of Sensors and Sensor Systems |
spelling | doaj-art-73a1ff3d7bd544dbab87d06638700f092025-02-06T07:09:13ZengCopernicus PublicationsJournal of Sensors and Sensor Systems2194-87712194-878X2025-02-0114273510.5194/jsss-14-27-2025Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performanceL. Mollard0C. Dieppedale1A. Hamelin2R. Liechti3G. Le Rhun4Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France<p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span class="inline-formula">×</span> 0.5 to 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span>, and incorporate sputtered potassium sodium niobate ((K<span class="inline-formula"><sub>0.35</sub></span>Na<span class="inline-formula"><sub>0.65</sub></span>)NbO<span class="inline-formula"><sub>3</sub></span>) thin-film piezo-motors from Sumitomo Chemical, with thicknesses varying from 0.5 to 1.5 <span class="inline-formula">µ</span>m. A comparison of the mirror's performance and static deformation as a function of KNN thickness will be presented and discussed. The results obtained with these non-resonant mirrors, all fabricated using a collective 200 mm silicon manufacturing process, exhibit the following: (a) an arm deformation of 50 to 80 <span class="inline-formula">µ</span>m corresponding to an estimated tensile residual stress of approximately 120 MPa in the KNN layer, (b) the same level of performance for the 0.5 <span class="inline-formula">µ</span>m thick lead zirconate titanate (PZT) and KNN at 10 V, and (c) an optical angle up to 8.5° at 40 V for the 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span> mirror design with 1.5 <span class="inline-formula">µ</span>m thick KNN. These results indicate that the MEMS mirrors fabricated with the KNN lead-free piezoelectric material offer state-of-the-art performances and open potential applications in a wide range of fields from light detection and ranging (lidar) systems to biomedical applications, thanks to the full biocompatibility of the KNN material.</p>https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf |
spellingShingle | L. Mollard C. Dieppedale A. Hamelin R. Liechti G. Le Rhun Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance Journal of Sensors and Sensor Systems |
title | Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance |
title_full | Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance |
title_fullStr | Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance |
title_full_unstemmed | Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance |
title_short | Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance |
title_sort | effects of potassium sodium niobate knn thickness on biaxial non resonant microelectromechanical systems mems mirror performance |
url | https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf |
work_keys_str_mv | AT lmollard effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance AT cdieppedale effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance AT ahamelin effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance AT rliechti effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance AT glerhun effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance |