Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance

<p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span...

Full description

Saved in:
Bibliographic Details
Main Authors: L. Mollard, C. Dieppedale, A. Hamelin, R. Liechti, G. Le Rhun
Format: Article
Language:English
Published: Copernicus Publications 2025-02-01
Series:Journal of Sensors and Sensor Systems
Online Access:https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832087128761171968
author L. Mollard
C. Dieppedale
A. Hamelin
R. Liechti
G. Le Rhun
author_facet L. Mollard
C. Dieppedale
A. Hamelin
R. Liechti
G. Le Rhun
author_sort L. Mollard
collection DOAJ
description <p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span class="inline-formula">×</span> 0.5 to 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span>, and incorporate sputtered potassium sodium niobate ((K<span class="inline-formula"><sub>0.35</sub></span>Na<span class="inline-formula"><sub>0.65</sub></span>)NbO<span class="inline-formula"><sub>3</sub></span>) thin-film piezo-motors from Sumitomo Chemical, with thicknesses varying from 0.5 to 1.5 <span class="inline-formula">µ</span>m. A comparison of the mirror's performance and static deformation as a function of KNN thickness will be presented and discussed. The results obtained with these non-resonant mirrors, all fabricated using a collective 200 mm silicon manufacturing process, exhibit the following: (a) an arm deformation of 50 to 80 <span class="inline-formula">µ</span>m corresponding to an estimated tensile residual stress of approximately 120 MPa in the KNN layer, (b) the same level of performance for the 0.5 <span class="inline-formula">µ</span>m thick lead zirconate titanate (PZT) and KNN at 10 V, and (c) an optical angle up to 8.5° at 40 V for the 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span> mirror design with 1.5 <span class="inline-formula">µ</span>m thick KNN. These results indicate that the MEMS mirrors fabricated with the KNN lead-free piezoelectric material offer state-of-the-art performances and open potential applications in a wide range of fields from light detection and ranging (lidar) systems to biomedical applications, thanks to the full biocompatibility of the KNN material.</p>
format Article
id doaj-art-73a1ff3d7bd544dbab87d06638700f09
institution Kabale University
issn 2194-8771
2194-878X
language English
publishDate 2025-02-01
publisher Copernicus Publications
record_format Article
series Journal of Sensors and Sensor Systems
spelling doaj-art-73a1ff3d7bd544dbab87d06638700f092025-02-06T07:09:13ZengCopernicus PublicationsJournal of Sensors and Sensor Systems2194-87712194-878X2025-02-0114273510.5194/jsss-14-27-2025Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performanceL. Mollard0C. Dieppedale1A. Hamelin2R. Liechti3G. Le Rhun4Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France<p>This work presents the results obtained with potassium sodium niobate (KNN) biaxial non-resonant microelectromechanical systems (MEMS) mirrors manufactured on a 200 mm silicon substrate. These MEMS mirrors feature various reflector dimensions for the squared shape, ranging from 0.5 <span class="inline-formula">×</span> 0.5 to 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span>, and incorporate sputtered potassium sodium niobate ((K<span class="inline-formula"><sub>0.35</sub></span>Na<span class="inline-formula"><sub>0.65</sub></span>)NbO<span class="inline-formula"><sub>3</sub></span>) thin-film piezo-motors from Sumitomo Chemical, with thicknesses varying from 0.5 to 1.5 <span class="inline-formula">µ</span>m. A comparison of the mirror's performance and static deformation as a function of KNN thickness will be presented and discussed. The results obtained with these non-resonant mirrors, all fabricated using a collective 200 mm silicon manufacturing process, exhibit the following: (a) an arm deformation of 50 to 80 <span class="inline-formula">µ</span>m corresponding to an estimated tensile residual stress of approximately 120 MPa in the KNN layer, (b) the same level of performance for the 0.5 <span class="inline-formula">µ</span>m thick lead zirconate titanate (PZT) and KNN at 10 V, and (c) an optical angle up to 8.5° at 40 V for the 2 <span class="inline-formula">×</span> 2 mm<span class="inline-formula"><sup>2</sup></span> mirror design with 1.5 <span class="inline-formula">µ</span>m thick KNN. These results indicate that the MEMS mirrors fabricated with the KNN lead-free piezoelectric material offer state-of-the-art performances and open potential applications in a wide range of fields from light detection and ranging (lidar) systems to biomedical applications, thanks to the full biocompatibility of the KNN material.</p>https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf
spellingShingle L. Mollard
C. Dieppedale
A. Hamelin
R. Liechti
G. Le Rhun
Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
Journal of Sensors and Sensor Systems
title Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
title_full Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
title_fullStr Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
title_full_unstemmed Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
title_short Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
title_sort effects of potassium sodium niobate knn thickness on biaxial non resonant microelectromechanical systems mems mirror performance
url https://jsss.copernicus.org/articles/14/27/2025/jsss-14-27-2025.pdf
work_keys_str_mv AT lmollard effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance
AT cdieppedale effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance
AT ahamelin effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance
AT rliechti effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance
AT glerhun effectsofpotassiumsodiumniobateknnthicknessonbiaxialnonresonantmicroelectromechanicalsystemsmemsmirrorperformance