Methodology to Determine the Stress Distribution Based on Fatigue Data with Bilinear Behavior and Its P–S–N Field and Testing Plan
In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (<inline-formula><math xmlns="http://www.w3.org/1998...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/5/2295 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mn>1</mn></msub><mo> </mo><mi>and</mi><mo> </mo><msub><mi>s</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> behavior (e.g., a competence failure mode); (2) the Weibull family that characterizes the entire bilinear behavior; and (3) the zero-vibration test plan that meets the required vibration reliability index of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0.97</mn></mrow></semantics></math></inline-formula> with a reliability confidence level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>L</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>. From the application, based on the formulated normal–Weibull relationship, we determine the failure percentiles for the normal (one, two, and three) sigma levels, as well as those failure percentiles corresponding to the capability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>p</mi></mrow></semantics></math></inline-formula>) and ability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>p</mi><mi>k</mi></mrow></semantics></math></inline-formula>) indices. Finally, we present the formulation to determine the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math></inline-formula> index and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>L</mi></mrow></semantics></math></inline-formula> level associated with each normal percentile, along with their numerical values. |
|---|---|
| ISSN: | 2076-3417 |