Methodology to Determine the Stress Distribution Based on Fatigue Data with Bilinear Behavior and Its P–S–N Field and Testing Plan

In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (<inline-formula><math xmlns="http://www.w3.org/1998...

Full description

Saved in:
Bibliographic Details
Main Authors: Osvaldo Monclova-Quintana, Manuel R. Piña-Monarrez, María M. Hernández-Ramos, Jesús F. Ortiz-Yáñez
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/5/2295
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mn>1</mn></msub><mo> </mo><mi>and</mi><mo> </mo><msub><mi>s</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> behavior (e.g., a competence failure mode); (2) the Weibull family that characterizes the entire bilinear behavior; and (3) the zero-vibration test plan that meets the required vibration reliability index of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0.97</mn></mrow></semantics></math></inline-formula> with a reliability confidence level of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>L</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>. From the application, based on the formulated normal–Weibull relationship, we determine the failure percentiles for the normal (one, two, and three) sigma levels, as well as those failure percentiles corresponding to the capability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>p</mi></mrow></semantics></math></inline-formula>) and ability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>p</mi><mi>k</mi></mrow></semantics></math></inline-formula>) indices. Finally, we present the formulation to determine the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>t</mi></mfenced></mrow></semantics></math></inline-formula> index and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>L</mi></mrow></semantics></math></inline-formula> level associated with each normal percentile, along with their numerical values.
ISSN:2076-3417