Full Field Strain Analysis of Blasting Under High Stress Condition Based on Digital Image Correlation Method

The depth of mineral resources like coal continuously increases due to the exhaustion of shallow resources, and the characteristic of high ground stress in deep ground inevitably affects fracture of rock blasting. Combining with high-speed photography technology, the digital image correlation method...

Full description

Saved in:
Bibliographic Details
Main Authors: Liyun Yang, Chenxi Ding, Renshu Yang, Zhen Lei, Jing Wang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/4894078
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The depth of mineral resources like coal continuously increases due to the exhaustion of shallow resources, and the characteristic of high ground stress in deep ground inevitably affects fracture of rock blasting. Combining with high-speed photography technology, the digital image correlation method (DIC) is introduced into experimental study on explosive mechanics. And strain evolution process of blasting under high stress condition is obtained by using the model experiment method. The preliminary results show that high stress condition has no obvious effects on the propagation law of blasting stress wave or its stress peak in the medium. In addition, it is found that medium in the “elastic vibration area” by conventional blast zoning is not always “elastic,” and on this basis, the concepts of “plastic area” and “quasielastic area” are put forward. The high stress condition does not influence partition range of above “plastic area” or “quasielastic area,” but in the “plastic area,” the high stress condition decreases both plastic strain value and its decay rate of relevant gauging points.
ISSN:1070-9622
1875-9203