Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics
We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilat...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2016/3265968 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-)de Sitter [(A)dS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α<1, while for α>1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant. |
---|---|
ISSN: | 1687-7357 1687-7365 |