Boron phosphide microwires based on-chip electrocatalytic oxygen evolution microdevice

Summary: Developing low-cost, high-performance metal-free electrocatalysts is crucial for sustainable oxygen evolution reactions (OERs) in alkaline media. Here, we synthesized ultra-long boron phosphide (BP) microwires along the [111] crystal axis with high yield. By controlling temperature and addi...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongwei Su, Qing Guo, Hongtao Li, Alei Li, Yunlei Zhong, Xu Zhang, Lin Geng, Shuai Liu, Liuqi Dong, Xiaohang Pan, Lin Wang, Lixing Kang
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004225001191
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Developing low-cost, high-performance metal-free electrocatalysts is crucial for sustainable oxygen evolution reactions (OERs) in alkaline media. Here, we synthesized ultra-long boron phosphide (BP) microwires along the [111] crystal axis with high yield. By controlling temperature and adding Ni, we identified Ni’s role as a flux and transport agent, optimizing BP microwires at 1050°C. Electrical property and band structure analysis revealed BP as a one-dimensional p-type semiconductor with a wide band gap. We constructed an on-chip electrocatalytic microdevice using individual BP microwires to evaluate OER performance. In 1M NaOH, the BP electrode achieved 50 mA cm−2 at an overpotential of 320 mV, outperforming other boron-based catalysts. Additionally, the nanocatalyst exhibited a low Tafel value (88 mV·dec−1) and excellent stability. This study offers valuable insights for developing future electrocatalysts and electrochemical reaction models.
ISSN:2589-0042