A Novel Faults Diagnosis Method for Rolling Element Bearings Based on ELCD and Extreme Learning Machine

A rolling bearing fault diagnosis method based on ensemble local characteristic-scale decomposition (ELCD) and extreme learning machine (ELM) is proposed. Vibration signals were decomposed using ELCD, and numerous intrinsic scale components (ISCs) were obtained. Next, time-domain index, energy, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingliang Liang, Dongmin Su, Daidi Hu, Mingtao Ge
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/1891453
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A rolling bearing fault diagnosis method based on ensemble local characteristic-scale decomposition (ELCD) and extreme learning machine (ELM) is proposed. Vibration signals were decomposed using ELCD, and numerous intrinsic scale components (ISCs) were obtained. Next, time-domain index, energy, and relative entropy of intrinsic scale components were calculated. According to the distance-based evaluation approach, sensitivity features can be extracted. Finally, sensitivity features were input to extreme learning machine to identify rolling bearing fault types. Experimental results show that the proposed method achieved better performance than support vector machine (SVM) and backpropagation (BP) neural network methods.
ISSN:1070-9622
1875-9203