A Hybrid Gradient-Projection Algorithm for Averaged Mappings in Hilbert Spaces
It is well known that the gradient-projection algorithm (GPA) is very useful in solving constrained convex minimization problems. In this paper, we combine a general iterative method with the gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that the sequence...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2012/782960 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | It is well known that the gradient-projection algorithm (GPA) is very useful in solving constrained convex minimization problems. In this paper, we combine a general iterative method with the gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that the sequence generated by the hybrid gradient-projection algorithm converges in norm to a minimizer of constrained convex minimization problems which solves a variational inequality. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |