Energy Maximisation and Power Management for a Wave-to-Wire Model of a Vibro-Impact Wave Energy Converter Array
This paper develops a wave-to-wire model of a vibro-impact wave energy converter array for stand-alone offshore applications. Nonlinear model predictive control is proposed for maximising the wave power capture of the array, and implemented by AC/DC converters and the space vector pulse width modula...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/12/10/1814 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper develops a wave-to-wire model of a vibro-impact wave energy converter array for stand-alone offshore applications. Nonlinear model predictive control is proposed for maximising the wave power capture of the array, and implemented by AC/DC converters and the space vector pulse width modulation technique. A hybrid energy storage system, consisting of batteries and supercapacitors, is placed parallel to the DC bus via buck-boost DC/DC converters to smooth the array power output, and a Lyapunov-based power management strategy is utilised to control the DC/DC converters for stabilising the DC bus voltage. Intensive numerical simulations are conducted; the results show that the proposed wave-to-wire model is capable to evaluate the performance of the vibro-impact wave energy converter array in various scenarios, and the proposed energy maximisation control and power management strategy can enhance wave power capture and stabilise the power output simultaneously. |
|---|---|
| ISSN: | 2077-1312 |