Spatiotemporal Variability of Cloud Parameters and Their Climatic Impacts over Central Asia Based on Multi-Source Satellite and ERA5 Data

As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation rema...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinrui Xie, Liyun Ma, Junqiang Yao, Weiyi Mao
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/15/2724
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation remain poorly understood. This study uses reanalysis and multi-source remote sensing datasets to investigate the spatiotemporal characteristics of clouds and their influence on regional climate. The cloud cover increases from the southwest to the northeast, with mid and low-level clouds predominating in high-altitude regions. All clouds have shown a declining trend during 1981–2020. According to satellite data, the sharpest decline in total cloud cover occurs in summer, while reanalysis data show a more significant reduction in spring. In addition, cloud cover changes influence the local climate through radiative forcing mechanisms. Specifically, the weakening of shortwave reflective cooling and the enhancement of longwave heating of clouds collectively exacerbate surface warming. Meanwhile, precipitation is positively correlated with cloud cover, and its spatial distribution aligns with the cloud water path. The cloud phase composition in Central Asia is dominated by liquid water, accounting for over 40%, a microphysical characteristic that further impacts the regional hydrological cycle.
ISSN:2072-4292