Short-Term Restriction of Physical and Social Activities Effects on Brain Structure and Connectivity
Background: Prolonged confinement in enclosed environments has raised concerns about its effects on both physical and mental health. Although increased rates of depression or anxiety during COVID-19 lockdowns have been reported, the effects of short-term restrictions on social activities and physica...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Brain Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3425/15/1/7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Prolonged confinement in enclosed environments has raised concerns about its effects on both physical and mental health. Although increased rates of depression or anxiety during COVID-19 lockdowns have been reported, the effects of short-term restrictions on social activities and physical on brain function and structure remain poorly known. Methods: This study explored longitudinal changes in brain gray matter volume (GMV) and functional connectivity (FC) immediately after and four months following a short-term lockdown in comparison to pre-lockdown conditions. MRI data were collected from 20 participants before the lockdown, from 29 participants (14 original, 15 new) two months post-lockdown, and from 27 out of the 29 participants four months post-lifting of the lockdown. Results: Results showed significant GMV reductions in the right gyrus rectus and cuneus post-lockdown, with further reductions observed four months after lifting the restrictions, affecting additional brain regions. Longitudinal FC trajectories revealed decreased connectivity between the default mode network (DMN) and sensorimotor/attention networks post-lockdown, and recovery after four months post-lifting of the lockdown. Conclusions: The observed plasticity in brain FC indicates substantial recovery potential with the potential long-term effect of structural changes. Our findings offer insights into the effects of isolation on the human brain, potentially informing rehabilitation mechanisms and interventions for individuals in similar conditions. |
---|---|
ISSN: | 2076-3425 |