General existence principles for nonlocal boundary value problems with φ-Laplacian and their applications

The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form (φ(x′))′=f1(t,x,x′)+f2(t,x,x′)F1x+f3(t,x,x′)F2x,α(x)=0, β(x)=0, where fj satisfy local Carathéodory conditions on some [0,T]×𝒟j⊂ℝ2, fj are either regular or...

Full description

Saved in:
Bibliographic Details
Main Authors: Ravi P. Agarwal, Donal O'Regan, Svatoslav Stanek
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/AAA/2006/96826
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form (φ(x′))′=f1(t,x,x′)+f2(t,x,x′)F1x+f3(t,x,x′)F2x,α(x)=0, β(x)=0, where fj satisfy local Carathéodory conditions on some [0,T]×𝒟j⊂ℝ2, fj are either regular or have singularities in their phase variables (j=1,2,3), Fi:C1[0,T]→C0[0,T](i=1,2), and α,β:C1[0,T]→ℝ are continuous. The proofs are based on the Leray-Schauder degree theory and use regularization and sequential techniques. Applications of general existence principles to singular BVPs are given.
ISSN:1085-3375
1687-0409