Parameter Identification of an Unmanned Surface Vessel Nomoto Model Based on an Improved Extended Kalman Filter
The accurate nonlinear modeling of an unmanned surface vessel (USV) is essential for advanced control and operational performance. This paper combines the locally weighted regression (LWR) algorithm and the extended Kalman filter (EKF) for parameter identification using state data from full-scale ve...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/1/161 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|