Leveraging potential of limpid attention transformer with dynamic tokenization for hyperspectral image classification.
Hyperspectral data consists of continuous narrow spectral bands. Due to this, it has less spatial and high spectral information. Convolutional neural networks (CNNs) emerge as a highly contextual information model for remote sensing applications. Unfortunately, CNNs have constraints in their underly...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0328160 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|