An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given i...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/8525090 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560601569689600 |
---|---|
author | Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou |
author_facet | Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou |
author_sort | Donia Ben Halima Abid |
collection | DOAJ |
description | This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example. |
format | Article |
id | doaj-art-664f0814a86a48a1a7b9537d8efe7e79 |
institution | Kabale University |
issn | 1076-2787 1099-0526 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Complexity |
spelling | doaj-art-664f0814a86a48a1a7b9537d8efe7e792025-02-03T01:27:08ZengWileyComplexity1076-27871099-05262021-01-01202110.1155/2021/85250908525090An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering TechniquesDonia Ben Halima Abid0Saif Eddine Abouda1Hanane Medhaffar2Mohamed Chtourou3University of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaThis paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.http://dx.doi.org/10.1155/2021/8525090 |
spellingShingle | Donia Ben Halima Abid Saif Eddine Abouda Hanane Medhaffar Mohamed Chtourou An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques Complexity |
title | An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_full | An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_fullStr | An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_full_unstemmed | An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_short | An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques |
title_sort | improved method for stochastic nonlinear system s identification using fuzzy type output error autoregressive hammerstein wiener model based on gradient algorithm multi innovation and data filtering techniques |
url | http://dx.doi.org/10.1155/2021/8525090 |
work_keys_str_mv | AT doniabenhalimaabid animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT saifeddineabouda animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT hananemedhaffar animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT mohamedchtourou animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT doniabenhalimaabid improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT saifeddineabouda improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT hananemedhaffar improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques AT mohamedchtourou improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques |