An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques

This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given i...

Full description

Saved in:
Bibliographic Details
Main Authors: Donia Ben Halima Abid, Saif Eddine Abouda, Hanane Medhaffar, Mohamed Chtourou
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/8525090
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560601569689600
author Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
author_facet Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
author_sort Donia Ben Halima Abid
collection DOAJ
description This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.
format Article
id doaj-art-664f0814a86a48a1a7b9537d8efe7e79
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-664f0814a86a48a1a7b9537d8efe7e792025-02-03T01:27:08ZengWileyComplexity1076-27871099-05262021-01-01202110.1155/2021/85250908525090An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering TechniquesDonia Ben Halima Abid0Saif Eddine Abouda1Hanane Medhaffar2Mohamed Chtourou3University of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaUniversity of Sfax, National Engineering School of Sfax (ENIS), Control & Energy Management Laboratory (CemLab), Sfax 3038, TunisiaThis paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.http://dx.doi.org/10.1155/2021/8525090
spellingShingle Donia Ben Halima Abid
Saif Eddine Abouda
Hanane Medhaffar
Mohamed Chtourou
An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
Complexity
title An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_full An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_fullStr An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_full_unstemmed An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_short An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques
title_sort improved method for stochastic nonlinear system s identification using fuzzy type output error autoregressive hammerstein wiener model based on gradient algorithm multi innovation and data filtering techniques
url http://dx.doi.org/10.1155/2021/8525090
work_keys_str_mv AT doniabenhalimaabid animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT saifeddineabouda animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT hananemedhaffar animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT mohamedchtourou animprovedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT doniabenhalimaabid improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT saifeddineabouda improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT hananemedhaffar improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques
AT mohamedchtourou improvedmethodforstochasticnonlinearsystemsidentificationusingfuzzytypeoutputerrorautoregressivehammersteinwienermodelbasedongradientalgorithmmultiinnovationanddatafilteringtechniques