A Review of Causal Methods for High-Dimensional Data
Causal learning from observational data is an important scientific endeavor, but the statistical and computational challenges posed by the high-dimensionality of many modern datasets are substantial. Peculiarities such as spurious correlations, endogeneity, noise accumulation, and deflated empirical...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10818663/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|