Enhanced performance of visible-light-induced Bi2MoO6–N-doped biochar for rhodamine B degradation and textile wastewater decontamination
Organic dyes are a significant source of growing wastewater pollution. Biochar-supported visible-light photocatalysts are gaining attention due to their cost-effectiveness and green perspective. This study presents a novel N-doped-coconut-husk-derived biochar (NBC)-supported bismuth molybdate (BMO)...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Case Studies in Chemical and Environmental Engineering |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666016424004845 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Organic dyes are a significant source of growing wastewater pollution. Biochar-supported visible-light photocatalysts are gaining attention due to their cost-effectiveness and green perspective. This study presents a novel N-doped-coconut-husk-derived biochar (NBC)-supported bismuth molybdate (BMO) as a photocatalyst. Urea, KOH were mixed with coconut-husk and pyrolyzed at 600–800 °C to prepare NBC. The ball-mill mixed BMO-NBC composites having 77 wt% BMO-23 wt% of 800 °C pyrolyzed NBC degraded 99.1 % of 10 mg/L RhB solution within 120 minutes. The photocatalyst was evaluated for on-site-collected textile-effluent remediation. The role of biochar functionalization, pyrolysis temperature, as well as composite composition, in its photocatalytic performance, are presented. |
|---|---|
| ISSN: | 2666-0164 |