Global Exponential Stability of Antiperiodic Solutions for Discrete-Time Neural Networks with Mixed Delays and Impulses
The problem on global exponential stability of antiperiodic solution is investigated for a class of impulsive discrete-time neural networks with time-varying discrete delays and distributed delays. By constructing an appropriate Lyapunov-Krasovskii functional, and using the contraction mapping princ...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2012/168375 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem on global exponential stability of antiperiodic solution is investigated for a class of impulsive discrete-time neural networks with time-varying discrete delays and distributed delays. By constructing an appropriate Lyapunov-Krasovskii functional, and using the contraction mapping principle and the matrix inequality techniques, a new delay-dependent criterion for checking the existence, uniqueness, and global exponential stability of anti-periodic solution is derived in linear matrix inequalities (LMIs). Two simulation examples are given to show the effectiveness of the proposed result. |
---|---|
ISSN: | 1026-0226 1607-887X |