On the Estimations of the Small Periodic Eigenvalues
We estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/145967 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561770288381952 |
---|---|
author | Seza Dinibütün O. A. Veliev |
author_facet | Seza Dinibütün O. A. Veliev |
author_sort | Seza Dinibütün |
collection | DOAJ |
description | We estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of th instability interval of Hill's equation for small values of Finally we illustrate and compare the results obtained by two different ways for some examples. |
format | Article |
id | doaj-art-64f13b30351f4dd68ea0887b05a90e3f |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-64f13b30351f4dd68ea0887b05a90e3f2025-02-03T01:24:14ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/145967145967On the Estimations of the Small Periodic EigenvaluesSeza Dinibütün0O. A. Veliev1Department of Mathematics, Dogus University, Acıbadem, Kadiköy, 81010 Istanbul, TurkeyDepartment of Mathematics, Dogus University, Acıbadem, Kadiköy, 81010 Istanbul, TurkeyWe estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of th instability interval of Hill's equation for small values of Finally we illustrate and compare the results obtained by two different ways for some examples.http://dx.doi.org/10.1155/2013/145967 |
spellingShingle | Seza Dinibütün O. A. Veliev On the Estimations of the Small Periodic Eigenvalues Abstract and Applied Analysis |
title | On the Estimations of the Small Periodic Eigenvalues |
title_full | On the Estimations of the Small Periodic Eigenvalues |
title_fullStr | On the Estimations of the Small Periodic Eigenvalues |
title_full_unstemmed | On the Estimations of the Small Periodic Eigenvalues |
title_short | On the Estimations of the Small Periodic Eigenvalues |
title_sort | on the estimations of the small periodic eigenvalues |
url | http://dx.doi.org/10.1155/2013/145967 |
work_keys_str_mv | AT sezadinibutun ontheestimationsofthesmallperiodiceigenvalues AT oaveliev ontheestimationsofthesmallperiodiceigenvalues |