On the Estimations of the Small Periodic Eigenvalues

We estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of...

Full description

Saved in:
Bibliographic Details
Main Authors: Seza Dinibütün, O. A. Veliev
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/145967
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561770288381952
author Seza Dinibütün
O. A. Veliev
author_facet Seza Dinibütün
O. A. Veliev
author_sort Seza Dinibütün
collection DOAJ
description We estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of th instability interval of Hill's equation for small values of Finally we illustrate and compare the results obtained by two different ways for some examples.
format Article
id doaj-art-64f13b30351f4dd68ea0887b05a90e3f
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-64f13b30351f4dd68ea0887b05a90e3f2025-02-03T01:24:14ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/145967145967On the Estimations of the Small Periodic EigenvaluesSeza Dinibütün0O. A. Veliev1Department of Mathematics, Dogus University, Acıbadem, Kadiköy, 81010 Istanbul, TurkeyDepartment of Mathematics, Dogus University, Acıbadem, Kadiköy, 81010 Istanbul, TurkeyWe estimate the small periodic and semiperiodic eigenvalues of Hill's operator with sufficiently differentiable potential by two different methods. Then using it we give the high precision approximations for the length of th gap in the spectrum of Hill-Sehrodinger operator and for the length of th instability interval of Hill's equation for small values of Finally we illustrate and compare the results obtained by two different ways for some examples.http://dx.doi.org/10.1155/2013/145967
spellingShingle Seza Dinibütün
O. A. Veliev
On the Estimations of the Small Periodic Eigenvalues
Abstract and Applied Analysis
title On the Estimations of the Small Periodic Eigenvalues
title_full On the Estimations of the Small Periodic Eigenvalues
title_fullStr On the Estimations of the Small Periodic Eigenvalues
title_full_unstemmed On the Estimations of the Small Periodic Eigenvalues
title_short On the Estimations of the Small Periodic Eigenvalues
title_sort on the estimations of the small periodic eigenvalues
url http://dx.doi.org/10.1155/2013/145967
work_keys_str_mv AT sezadinibutun ontheestimationsofthesmallperiodiceigenvalues
AT oaveliev ontheestimationsofthesmallperiodiceigenvalues