First-principles Hubbard parameters with automated and reproducible workflows

Abstract We introduce an automated, flexible framework (aiida-hubbard) to self-consistently calculate Hubbard U and V parameters from first-principles. By leveraging density-functional perturbation theory, the computation of the Hubbard parameters is efficiently parallelized using multiple concurren...

Full description

Saved in:
Bibliographic Details
Main Authors: Lorenzo Bastonero, Cristiano Malica, Eric Macke, Marnik Bercx, Sebastiaan Huber, Iurii Timrov, Nicola Marzari
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01685-4
Tags: Add Tag
No Tags, Be the first to tag this record!