Computing Edge Version of Resolvability and Double Resolvability of a Graph

The field of graph theory is extensively used to investigate structure models in biology, computer programming, chemistry, and combinatorial optimization. In order to work with the chemical structure, chemists require a mathematical form of the compound. The chemical structure can be depicted using...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Ahmad, Zohaib Zahid, Tabasam Rashid, Juan Luis Garcia Guirao
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2022/2448032
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565587542278144
author Muhammad Ahmad
Zohaib Zahid
Tabasam Rashid
Juan Luis Garcia Guirao
author_facet Muhammad Ahmad
Zohaib Zahid
Tabasam Rashid
Juan Luis Garcia Guirao
author_sort Muhammad Ahmad
collection DOAJ
description The field of graph theory is extensively used to investigate structure models in biology, computer programming, chemistry, and combinatorial optimization. In order to work with the chemical structure, chemists require a mathematical form of the compound. The chemical structure can be depicted using nodes (which represent the atom) and links (which represent the many types of bonds). As a result, a graph theoretic explanation of this problem is to give representations for the nodes of a graph such that different nodes have unique representations. This graph theoretic study is referred to as the metric dimension. In this article, we have computed the edge version of the metric dimension and doubly resolving sets for the family of cycle with chord Cnt for n≥6 and 2≤t≤⌊n/2⌋.
format Article
id doaj-art-631a04b2c1ed43ca99c1dbcfd5edde72
institution Kabale University
issn 2090-9071
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Chemistry
spelling doaj-art-631a04b2c1ed43ca99c1dbcfd5edde722025-02-03T01:07:15ZengWileyJournal of Chemistry2090-90712022-01-01202210.1155/2022/2448032Computing Edge Version of Resolvability and Double Resolvability of a GraphMuhammad Ahmad0Zohaib Zahid1Tabasam Rashid2Juan Luis Garcia Guirao3University of Management and Technology (UMT)University of Management and Technology (UMT)University of Management and Technology (UMT)Departamento de Matematica Aplicada y EstadisticaThe field of graph theory is extensively used to investigate structure models in biology, computer programming, chemistry, and combinatorial optimization. In order to work with the chemical structure, chemists require a mathematical form of the compound. The chemical structure can be depicted using nodes (which represent the atom) and links (which represent the many types of bonds). As a result, a graph theoretic explanation of this problem is to give representations for the nodes of a graph such that different nodes have unique representations. This graph theoretic study is referred to as the metric dimension. In this article, we have computed the edge version of the metric dimension and doubly resolving sets for the family of cycle with chord Cnt for n≥6 and 2≤t≤⌊n/2⌋.http://dx.doi.org/10.1155/2022/2448032
spellingShingle Muhammad Ahmad
Zohaib Zahid
Tabasam Rashid
Juan Luis Garcia Guirao
Computing Edge Version of Resolvability and Double Resolvability of a Graph
Journal of Chemistry
title Computing Edge Version of Resolvability and Double Resolvability of a Graph
title_full Computing Edge Version of Resolvability and Double Resolvability of a Graph
title_fullStr Computing Edge Version of Resolvability and Double Resolvability of a Graph
title_full_unstemmed Computing Edge Version of Resolvability and Double Resolvability of a Graph
title_short Computing Edge Version of Resolvability and Double Resolvability of a Graph
title_sort computing edge version of resolvability and double resolvability of a graph
url http://dx.doi.org/10.1155/2022/2448032
work_keys_str_mv AT muhammadahmad computingedgeversionofresolvabilityanddoubleresolvabilityofagraph
AT zohaibzahid computingedgeversionofresolvabilityanddoubleresolvabilityofagraph
AT tabasamrashid computingedgeversionofresolvabilityanddoubleresolvabilityofagraph
AT juanluisgarciaguirao computingedgeversionofresolvabilityanddoubleresolvabilityofagraph