Deep learning empowered sensor fusion boosts infant movement classification

Abstract Background To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending...

Full description

Saved in:
Bibliographic Details
Main Authors: Tomas Kulvicius, Dajie Zhang, Luise Poustka, Sven Bölte, Lennart Jahn, Sarah Flügge, Marc Kraft, Markus Zweckstetter, Karin Nielsen-Saines, Florentin Wörgötter, Peter B. Marschik
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Communications Medicine
Online Access:https://doi.org/10.1038/s43856-024-00701-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors. These approaches are hardly comparable as all models are designed, trained and evaluated on proprietary/silo-data sets. Methods With this study we propose a sensor fusion approach for assessing fidgety movements (FMs). FMs were recorded from 51 typically developing participants. We compared three different sensor modalities (pressure, inertial, and visual sensors). Various combinations and two sensor fusion approaches (late and early fusion) for infant movement classification were tested to evaluate whether a multi-sensor system outperforms single modality assessments. Convolutional neural network (CNN) architectures were used to classify movement patterns. Results The performance of the three-sensor fusion (classification accuracy of 94.5%) is significantly higher than that of any single modality evaluated. Conclusions We show that the sensor fusion approach is a promising avenue for automated classification of infant motor patterns. The development of a robust sensor fusion system may significantly enhance AI-based early recognition of neurofunctions, ultimately facilitating automated early detection of neurodevelopmental conditions.
ISSN:2730-664X