Uncertainty Quantification for the Transient Response of Human Equivalent Antenna Using the Stochastic Collocation Approach
The paper deals with the uncertainty quantification of the transient axial current induced along the human body exposed to electromagnetic pulse radiation. The body is modeled as a straight wire antenna whose length and radius exhibit random nature. The uncertainty is propagated to the output transi...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2019/4640925 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper deals with the uncertainty quantification of the transient axial current induced along the human body exposed to electromagnetic pulse radiation. The body is modeled as a straight wire antenna whose length and radius exhibit random nature. The uncertainty is propagated to the output transient current by means of the stochastic collocation method. The stochastic approach is entirely nonintrusive and serves as a wrapper around the deterministic code. The numerical deterministic model is based on the time domain Hallen integral equation solved by means of the Galerkin-Bubnov indirect boundary element method (GB-IBEM). The stochastic moments, i.e., the mean and the variance of the transient current, are calculated. Confidence margins are obtained for the whole duration of the transient response as well as for the maximal current value. The presented approach enables the estimation of the probability for the induced current to exceed the basic restrictions prescribed by regulatory bodies. The sensitivity analysis of the input parameters indicates to which extent the variation of the input parameter set influences the output values which is particularly interesting for the design of the human equivalent antenna. |
---|---|
ISSN: | 1687-5869 1687-5877 |