Vibration Characteristics and Power Flow Analyses of a Ship Propulsion Shafting System with General Support and Thrust Loading

In this paper, flexural vibration and power flow transmission of a ship propulsion shafting structure are analyzed via energy principle description in conjunction with Rayleigh–Ritz procedure, in which the shafting vibration displacement is constructed as a superposition of Fourier series and bounda...

Full description

Saved in:
Bibliographic Details
Main Authors: Deshui Xu, Jingtao Du, Chuan Tian
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/3761590
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, flexural vibration and power flow transmission of a ship propulsion shafting structure are analyzed via energy principle description in conjunction with Rayleigh–Ritz procedure, in which the shafting vibration displacement is constructed as a superposition of Fourier series and boundary-smoothing supplementary functions. Effect of the distributed bearing support and thrust loading of propulsion shafting system is considered in terms of potential energy of system Lagrangian. Numerical examples are presented to demonstrate the reliability and effectiveness of the established model by comparing results with those from finite element method. Results show that the current model can deal with the vibration analysis of ship propulsion shafting with thrust loading and distributed bearing very well. Influence of boundary restraints, stiffness of distributed bearings, and thrust loading on vibration characteristics of ship shafting system is studied and addressed. Numerical study on power flow analysis is also conducted to investigate the characteristics of vibrational energy transmission in such practical structure. Results show that the stiffness of spatial bearing support has significant influence on vibrational energy transmission and thrust force will greatly affect the total input power into such structure.
ISSN:1070-9622
1875-9203