A Spherically Symmetric Model for the Tumor Growth
The nonlinear tumor equation in spherical coordinates assuming that both the diffusivity and the killing rate are functions of concentration of tumor cell is studied. A complete classification with regard to the diffusivity and net killing rate is obtained using Lie symmetry analysis. The reduction...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/726837 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nonlinear tumor equation in spherical coordinates assuming that both the diffusivity and the killing rate are functions of concentration of tumor cell is studied. A complete classification with regard to the diffusivity and net killing rate is obtained using Lie symmetry analysis. The reduction of the nonlinear governing equation is carried out in some interesting cases and exact solutions are obtained. |
---|---|
ISSN: | 1110-757X 1687-0042 |