Effect of Method Type on the Response of Continuum Vibro-Impact

The force integration method (FIM) and the methods based on the mode transfer principle are the frequently used choices for solving the vibro-impact problem of continuum. Notably, there are different solving options such as numerical and semianalytical procedures. In this paper, a new modeling metho...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongtao Wei, Gang Li, Pan Guo, Jun Zhao
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/2718502
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The force integration method (FIM) and the methods based on the mode transfer principle are the frequently used choices for solving the vibro-impact problem of continuum. Notably, there are different solving options such as numerical and semianalytical procedures. In this paper, a new modeling method based on the mode transfer principle, called the relative mode transfer method (RMTM), is proposed, and its semianalytical solution is obtained. A typical vibro-impact problem of continuum beam is studied. The time-history response under periodic excitation is obtained using the FIM, mode transfer method (MTM) through numerical procedure, and the RMTM through numerical procedure and semianalytical procedure. The effects of the method on the system steady-state response, amplitude-frequency response, and sticking motion are discussed. The impact type is divided into “hard impact” and “soft impact” when obtaining the results.
ISSN:1070-9622
1875-9203