Advanced Presentation of BETHSY 6.2TC Test Results Calculated by RELAP5 and TRACE
Today most software applications come with a graphical user interface, including U.S. Nuclear Regulatory Commission TRAC/RELAP Advanced Computational Engine (TRACE) best-estimate reactor system code. The graphical user interface is called Symbolic Nuclear Analysis Package (SNAP). The purpose of the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Science and Technology of Nuclear Installations |
Online Access: | http://dx.doi.org/10.1155/2012/812130 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Today most software applications come with a graphical user interface, including U.S. Nuclear Regulatory Commission TRAC/RELAP Advanced Computational Engine (TRACE) best-estimate reactor system code. The graphical user interface is called Symbolic Nuclear Analysis Package (SNAP). The purpose of the present study was to assess the TRACE computer code and to assess the SNAP capabilities for input deck preparation and advanced presentation of the results. BETHSY 6.2 TC test was selected, which is 15.24 cm equivalent diameter horizontal cold leg break. For calculations the TRACE V5.0 Patch 1 and RELAP5/MOD3.3 Patch 4 were used. The RELAP5 legacy input deck was converted to TRACE input deck using SNAP. The RELAP5 and TRACE comparison to experimental data showed that TRACE results are as good as or better than the RELAP5 calculated results. The developed animation masks were of great help in comparison of results and investigating the calculated physical phenomena and processes. |
---|---|
ISSN: | 1687-6075 1687-6083 |